
/***
Copyright (C) 1994-2008 by Phil Green.
All rights reserved.

This software is part of a beta-test version of the swat/cross_match/phrap
package. It should not be redistributed or
used for any commercial purpose, including commercially funded
sequencing, without written permission from the author and the
University of Washington.

This software is provided ``AS IS'' and any express or implied
warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose, are disclaimed.
In no event shall the authors or the University of Washington be
liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or
business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence
or otherwise) arising in any way out of the use of this software, even
if advised of the possibility of such damage.

#***/

DOCUMENTATION FOR PHRAP AND CROSS_MATCH (VERSION 1.080812)

phrap ("phragment assembly program", or "phil's revised assembly
program"; a homonym of "frappe" = French for "swat") -- a
program for assembling shotgun DNA sequence data. Key features:
allows use of entire read (not just trimmed high quality part); uses a
combination of user-supplied and internally computed data quality
information to improve accuracy of assembly in the presence of
repeats; constructs contig sequence as a mosaic of the highest quality
parts of reads (rather than a consensus); provides extensive information
about assembly (including quality values for contig sequence) to
assist trouble-shooting; able to handle moderately large datasets.
 N.B. phrap does not provide editing or viewing capabilities; these
are available with consed and phrapview. It is strongly recommended
that phrap be used in conjunction with the base calls and base quality
values produced by the basecaller, phred; and with the sequence
editor/assembly viewer, consed.

cross_match -- a general-purpose utility (based on a "banded" version
of SWAT, an efficient implementation of the Smith-Waterman algorithm)
for comparing sets of (long or short) DNA or protein sequences. For
example, it can be used to compare DNA sequencing reads to a set of
vector sequences and produce vector-masked versions of the reads;
reads to contig or genome sequences; cDNA or EST sequences to genome
sequences; contig sequences found by two alternative assembly
procedures (e.g. phrap and gap) to each other; phrap contigs to final
edited clone or genome sequences; 'merged base reads' arising from
mixed signal DNA sequencing traces to genome sequences. Cross_match
has recently been enhanced to allow comparison of large numbers of

reads generated by high throughput methods to a reference genome, for
RNASeq, ChIPSeq, or resequencing applications.

CONTENTS

I. INSTALLATION

II. RUNNING PHRAP & CROSS_MATCH
 1. Phrap
 2. Cross_match

III. INPUT DATA FILES
 1. Read naming convention
 2. Sequence files
 3. Quality files
 4. Vector screening

IV. COMMAND LINE OPTIONS
 1. Scoring of pairwise alignments
 2. Banded search
 3. Filtering of matches
 4. Input data interpretation
 5. Assembly
 6. Consensus sequence construction
 7. Output
 8. Miscellaneous

V. VIEWING PHRAP ASSEMBLIES WITH OTHER PROGRAMS
 1. Consed
 2. Phrapview
 3. Gap

VI. PHRAP OUTPUT

VII. CROSS_MATCH OUTPUT

VIII. SPECIAL CONSIDERATIONS/PARAMETER MODIFICATIONS FOR PARTICULAR DATA TYPES
 1. (TO BE ADDED) Shotgun assemblies
 2. (TO BE ADDED) Whole genome assemblies
 3. (TO BE ADDED) Assemblies of polymorphic reads from a single locus
 4. (TO BE ADDED) EST assemblies
 5. Comparisons of ESTs/cDNAs to genome.
 6. Short read analyses
 7. "Resequencing" applications
 8. (TO BE ADDED) Merged base reads

IX. PROBLEMS
 1. Insufficient memory
 2. (TO BE ADDED) Other phrap- or cross_match-generated error messages
 3. (TO BE ADDED) Phrap- or cross_match-generated warning messages
 4. "Crashes" reported by operating system
 5. Long running time
 6. (TO BE ADDED) Misassemblies, incomplete assemblies, incorrect consensus
sequence

 7. How to report problems

APPENDIX: ALGORITHMS (TO BE ADDED)

I. INSTALLATION

The source code for the swat/cross_match/phrap package will be sent to
you in the form an email message containing a uuencoded .tar.Z (or .tar.gz)
file;
you may need to have access to a Unix system for the initial
unpacking, but once you've uudecoded it and unpacked the .tar file
(steps i and ii below), you should be able to compile the programs
on computers running other operating systems -- they should be portable
to almost anything with a decent C compiler and adequate memory (512 Mb
RAM or more is desirable).

Here are the steps needed to unpack and install the programs:

i. Save the email message as a file (for example, "temp.mail"). If
possible, do this using the Unix mail command, rather than another
mail program -- some mail programs (e.g. Pine) remove trailing spaces
on each line of incoming messages, which will corrupt a uuencoded
message. If you cannot use Unix mail, try to avoid opening the message
before you save it.
 Do not attempt to modify the saved mail message in any way. That is
unnecessary and may corrupt the message.

ii. To unpack the saved email message, execute the following two
commands on a Unix workstation, in the directory containing the file
created in step i above:

> uudecode temp.mail

> zcat distrib.tar.Z | tar xvf -

[OR > zcat distrib.tar.gz | tar xvf -]

If either command results in an error message, it is likely that
the email message was corrupted by your mail program (see step i above).

iii. To produce working versions of the programs, move (if necessary)
all of the files produced by the above command to the computer on
which you wish to run the programs (which must have a C compiler!),
and execute the following command in the directory that contains the
files:

> make

If your compiler does not recognize the -O2 optimization flag (which
should be evident from warning messages it produces), you should change
the line

 CFLAGS= -O2

in the file "makefile" to

 CFLAGS= -O

Then remove all files ending in .o produced by the original make, and
recompile.

Other warning messages (as opposed to error messages!) that may be
produced by the compiler can in general be ignored.

(N.B. TO USERS OF PREVIOUS VERSIONS: There are no longer separate
.manyreads OR .longreads variants of the programs -- the default
versions of cross_match and phrap automatically handle large numbers
of reads, and long sequences).

iv. If you are operating a non-commercial (academic or government)
computer facility which provides access to several independent
investigators, you are required by the licensing agreement to set the
permissions on the executables and source code to allow execute but
not read access, so that the programs may not be copied.

II. RUNNING PHRAP & CROSS_MATCH

1. Phrap.

 i. PhredPhrap script. Generally if you are assembling reads
basecalled by phred you should run phrap via the phredPhrap script
rather than directly. PhredPhrap runs phred; runs another script,
phd2fasta, to make the fasta format sequence file from the .phd files
generated by phred; runs cross_match to mask vector sequence; runs
phrap; and finally runs some other programs that provide useful
information to consed (e.g. tagging of repeats). It will accept any
of the phrap command line options described below (section IV).
PhredPhrap and its documentation are included in the consed
distribution (available from David Gordon).

 Although phredPhrap automates most of the steps in the assembly, you
will still need to do several things: (a) set up the directory
structure that is assumed by phredPhrap and make sure your
chromatogram files are appropriately located in this structure; (b)
adhere to the read naming convention assumed by phrap, or make other
arrangements to get template/chemistry/read direction information into
the .phd or fasta file (THIS IS IMPORTANT -- SEE section III.1 below);
and (c) make sure that appropriate clone and subclone (sequencing)
vector sequences are included in a fasta file used for screening with
cross_match (see section III.4 below).

 ii. The following instructions pertain to "standalone" operation of
phrap. Before the run, you may want to increase the amount of memory
available to phrap: see the instructions for using the Unix
"limit" command below under IX.1, "Insufficient memory".
The command line should be of the form

> phrap seq_file1 [seq_file2 ...] [-option value] [-option value] ...

where each seq_file is the name of a sequence file in FASTA format as
described below in III.2. (The file name may include a directory/path
specification). Available options are described in section IV
below. [The command line format is actually somewhat more flexible
than indicated above, i.e. option/value pairs can be interspersed with
file names].

The standard output from this command is extensive and should be
redirected to a file (phrap.out in the following example).

Example:

> phrap C05D11.reads.screen -minmatch 20 -new_ace > phrap.out

Note that the quality file is not specified on the command line, but
instead must be named appropriately (as described below in III.3) to
be recognized by phrap; in this example its name would need to be
C05D11.reads.screen.qual. If more than one seq_file is provided, then
reads in the first file are assembled only against sequences in the 2d
(and later) files; no sequences are compared to other sequences in the
same file. [N.B. THE ABILITY TO USE MULTIPLE SEQUENCE FILES IS NOT
AVAILABLE AT PRESENT WITH PHRAP -- YOU SHOULD PROVIDE ONLY A SINGLE
SEQUENCE FILE. HOWEVER MULTIPLE FILES ARE ALLOWED WITH
CROSS_MATCH]. In this case, many features of phrap (e.g. checking for
anomalies, vector, etc.) which rely on comprehensive read-read
comparisons are turned off, SWAT scores are used in place of
LLR_scores, and implied merges are not performed -- i.e. each read in
the first file is merged with at most one sequence in the 2d
file. This usage of phrap is convenient for aligning a set of reads
against a known "finished" sequence in order to look for
polymorphisms, for example.

2. Cross_match.

The command line should be of the form

> cross_match seq_file1 [seq_file2 ...] [-option value] [-option value] ...

where each seq_file is the name of a sequence file in FASTA format as
described below in III.2. [The command line format is actually
somewhat more flexible than indicated above, i.e. option/value pairs
can be interspersed with file names. However the relative order of
the sequence files is important inasmuch as the first file (the 'query
file') is treated differently from the others ('subject files')]. (The
file name may include a directory/path specification). Available
options are described in section IV below. If the command line
specifies more than one file, all sequences in the first file are
compared to those in the second (and any subsequent) files. If there
is only one file, all sequences in it are compared to each other
(N.B. in the single-file case, at present entries are not compared to
their own complements, but are compared to themselves in the same
orientation (excluding the trivial identity match), and to all other

entries in both orientations). Matches meeting relevant criteria (see
section IV) are written to the standard output.

The standard output should generally be redirected to a file.

III. INPUT FILES

Input files to cross_match and phrap are of two types: sequence files
(required), and quality files (optional, but strongly recommended for
phrap). If you are doing phrap assemblies of reads generated by the
basecalling program phred, then it is recommended that you generate
these input files automatically using the phd2fasta or phredPhrap
scripts distributed with phred and consed (see II.1.i above).
Even in this case however you should read the following section on the
read naming convention, since you will either need to make sure that
the read names attached to your chromatogram files adhere to the
naming convention, or you will need to modify the phredPhrap script
(or create your own script) so that correct template names and read
orientation information is appended to the .phd files after they are
produced by phred.

1. Read naming convention (phrap only)

 In addition to the sequence and quality data, phrap needs to know
three things for each read:

 (i) the name of the subclone (or other template) from which the read
is derived; this is used, for example, in checking for chimeric
subclones (for which purpose it is necessary to know when two reads
are from the same subclone so that they are not regarded as
independently confirming each other) and for certain other data
anomalies;

 (ii) the orientation of the read (forward or reverse) within the
subclone, in cases where data is acquired from each end of a subclone
insert (at present this information is used only for consistency
checking following assembly, and not in the assembly itself, but this
will change in future versions);

 (iii) the chemistry used to generate the read (which influences
phrap's decisions as to how to treat discrepancies between potentially
overlapping reads, and as to how to adjust qualities of reads which
confirm each other -- confirmation of a read by another read with
different chemistry counts as significantly as confirmation by an
opposite-strand read).

The above information is generally conveyed via the read names using
the "St. Louis" read naming convention described below. If your
laboratory uses a different naming system, you have several options:

 (i) provide the relevant information in the description field of the
.fasta file instead (see below), or (if you are using the phd2Fasta
script) as tags in the .phd files for each read;

 (ii) see whether appropriate values of the command line options
-subclone_delim and -n_delim (described below) can be used to bring
your own naming convention into conformity with the St. Louis
convention -- if your naming convention is such that the subclone name
always occurs as the first part of the read name, and the end of the
subclone name occurs at the first (or n-th for some fixed value of n)
occurrence of a particular character, then you may be able to use
these options without having to change your read names;

 (iii) create a script which translates your read names into St. Louis
form (this does not mean that you cannot retain the original names as
well -- for example, for purposes of running phrap you could create a
directory of "links" to your chromatogram files, such that the link
names adhere to the naming convention, and then run the phredPhrap
script on this directory);

 (iv) alter the subroutines in the source module "names.c" in order to
parse your read names correctly; or

 (v) ignore the issue and hope that it does not cause problems. This
may have unpredictable adverse effects on assembly and is NOT
recommended.

 The "St. Louis" read naming convention assumed by phrap is as follows:

 The portion of the read name up to the first '.', if any, is
the name of the subclone from which the read is derived (i.e. the DNA
template used in the sequencing reaction). If desired, the command line
option -subclone_delim can be used to change the character which
delimits the end of the subclone name to something other than '.',
and/or the option -n_delim may be used to indicate that the subclone
name contains a fixed number of occurrences of this character within
it. See section IV below for a description of command line options.

 The orientation of the read within the subclone, and the chemistry,
are indicated by the first letter following the '.', as follows:

 "s" forward direction read on single stranded (SS) template, dye primer
chemistry
 "f" forward read on double stranded (DS) template, dye primer chemistry
 "r" DS reverse read, dye primer chemistry
 "x" SS forward read, standard dye terminator chemistry
 "z" DS forward read, standard dye terminator chemistry
 "y" DS reverse read, standard dye terminator chemistry
 "i" SS forward read, big dye terminator chemistry
 "b" DS forward read, big dye terminator chemistry
 "g" DS reverse read, big dye terminator chemistry
 "t" for T7 (cDNAs)
 "p" for SP6 (cDNAs)
 "e" for T3 (cDNAs)
 "d" for special
 "c" consensus pieces
 "a" assembly pieces

 The remainder of the name is ignored. If the read name ends in ".seq"

the .seq is removed.

 Example: the name BAC112_a11b3.x3_pg indicates a forward read with
(old) dye terminator chemistry from the subclone BAC112_a11b3.

2. Sequence files.

 With both phrap and cross_match, either a single sequence file or
multiple sequence files can be specified (N.B. WITH CURRENT VERSION OF
PHRAP ONLY A SINGLE SEQUENCE FILE SHOULD BE SPECIFIED). If a single
file is specified, all sequences in it are compared to each other; if
more than one file is specified, sequences in the first file are
compared to sequences in the second (and subsequent) files. Typically
phrap is used with a single input sequence file containing the reads,
unless one wants to assemble one set of reads "against" another
sequence or set of sequences (see below). Cross_match is typically
used with two or more input sequence files, the first containing the
"query" sequences and the remaining files containing the "subject"
sequences, but it may also be used to compare the sequences in a
single input file to each other.

 Cross_match may be used with either DNA or protein sequences (mixed
types are not allowed, i.e. all input sequences must be DNA, or all
must be protein). In the case of DNA sequences, the query file (but
not subject files) may include 'merged base' DNA sequences produced by
phred from mixed signal DNA sequencing traces (see below).

 Phrap is used only with ordinary DNA sequences as input. It is
designed to be able to use all of each read sequence in the assembly,
not just the trimmed (highest quality) part, so the full sequence of
each read should be provided when available. If phred-generated
qualities are not available however then the default quality parameter
-default_qual should be set appropriately (section IV).

Sequence files must be in FASTA format:
 (i) Each sequence entry has a single header line as follows: The
first character is '>'. This is followed immediately (i.e. with no
intervening spaces or other characters) by the sequence name, and then
(optionally) by a space or spaces, followed by (on the same line)
descriptive information about the sequence.
 (ii) The header line is followed by a separate line or lines
containing the sequence. The sequence may all be placed on a single line,
or split among several lines (of arbitrary length).

Very large amounts of input data are permitted: Individual sequences
must be 2 billion characters or less (the same limit applies to the
name and descriptive information for each sequence). The combined
total size of all query sequences is, by default, limited to about 1
billion characters; however, this can be increased by changing the
line

 typedef int SEQ_AREA;

in the header file swat.h to either

 typedef unsigned int SEQ_AREA;

(which will increase the limit to 2 billion characters), or

 typedef long int SEQ_AREA;

(which on most computers will increase it to about 10^18 -- at the
cost of increased memory and running time), and recompiling. There is
no combined total length constraint for subject sequences. The 2
billion residue length constraint for individual sequences (both query
and subject) cannot be increased.

Descriptive information on the header line may optionally be used to
indicate template (subclone), read orientation, read chemistry and
dye, and repeats. This information is written back out to the .ace
and .singlets files. If present, this information overrides whatever
would be implied by the read name. The template name is indicated by
including the word "TEMPLATE:", followed by a space, followed by the
name of the template. Orientation is indicated by the word
"DIRECTION:", followed by the word "fwd" or "rev". Chemistry is
indicated by the word "CHEM:", followed by the word "prim" (for dye
primer), "term" for dye terminator, or "unknown". Dye is indicated by
the word "DYE:" followed by "rhod", "big", "ET", "d-rhod", or
"unknown". The chemistry and dye information is provided
automatically by newer versions of phred (version 0.980904.a or
later), which obtain it from the chromatogram file. (Use the script
phd2fasta distributed with phred and consed to create the .fasta file
from the .phd files created by phred).

 In the query file, repeated sequence may be indicated by the word
"REPEAT:" followed by a pair of integers indicating the start and end
of the repeat (these should be separated by spaces). There can be
multiple "REPEAT:" tags for a single sequence. If the parameter
-repeat_screen (see section IV.2 below) is set to 1 or 3, the sequence
within any such repeat is ignored for the purpose of finding word
matches between sequences. This can substantially improve the speed
and (for phrap) accuracy of assembly of repeat-rich regions.

Example:

>read#5 DIRECTION: rev CHEM: prim DYE: ET TEMPLATE: a23f1 REPEAT: 151 237
REPEAT: 305 422 any_other_information
GAAAGATCTCATTGATCACTCTATTCAAGTGGGAGTCTCCGGTCTTT
ATGATCGATTTGTGAATCTTCGTATCAAAGTTGGAGCTGACAAGTATCCA
TTGCTTGCGAAATGGGCTCAAATTTTCACTCAGGGAGTCGTCTTCGATCC
TTCAAGAATTCATCAATGTGCTCAAAAGTTGGCTGGAGAAGCTCGTGATC
GGAAGAGAGATGGATGTACTGTGGCATCAACTGCAGTAGCTTCAATGGTT
TATGGAAAGAGTATGTTATTt

In subject file(s), repeats are instead indicated by using lower-case
letters for the residues.

Non-alphabetic characters (including '*', and digits) in the

sequence lines are automatically stripped out when the file is read
in, except for '-' and '.' in DNA files, which are both converted to
'N'; '>' must not appear anywhere within the sequence since it is
assumed to start the header of a new sequence (even if it is not at
the beginning of a line).

Lower case letters are converted to upper case on readin, with
the following important exceptions:

 (i) if -repeat_screen (see section IV.2 below) is set to 2 or 3,
segments of subject file sequences consisting entirely of lower case
letters are assumed to represent repeats, and nucleating perfect matches
falling entirely within them (or spliced matches with either splice
junction falling within them) are ignored;

 (ii) the query file may include 'merged base' DNA sequence reads
produced by phred from mixed signal DNA sequencing traces. Such reads
indicate at each position the two strongest peaks detected in the
signal, and use standard ambiguity codes together with upper and lower
case to indicate these peaks, as follows:

Merged base read symbols:

A,C,G,T (single detected peak)

 stronger peak weaker peak
M A C
m C A
K G T
k T G
R A G
r G A
Y C T
y T C
S C G
s G C
W A T
w T A

N no information

For effective searches with merged base reads an appropriate score
matrix should be provided using the -matrix option (see IV.1 below);
the matrix "mb_matrix" provided with the distribution has been found
to be useful for this purpose. Note that with this score matrix
the default values of -minscore, -near_minscore, -gap1_dropoff and
-gap1_minscore are too small, and should be changed on the command line.

3. Quality files.

 For each input sequence file in FASTA format, you may optionally
include a corresponding file of data quality information. This is
strongly recommended for phrap runs since it greatly improves the
accuracy of assembly and of the consensus sequence; with cross_match,
the qualities are at present used only for purposes of annotating and

tabulating discrepancies and not in the alignment scoring. The name of
this file must consist of the name of the FASTA file, with ".qual"
appended.

 The format of the .qual file is similar to that of the corresponding
FASTA file. For each read there should appear a header line identical
(except possibly for the "description" field) to that in the FASTA
file. This is followed by one or more lines giving the qualities for
each base. Quality values should be integers >= 0 and <= 99, and
should be separated by spaces. No other (non-digit, non-white space)
characters should appear. The total number of quality values for each
read must match the number of bases for that read in the FASTA file.
Also, the orders of the reads in the FASTA and corresponding .qual
file must be identical. N's are automatically assigned quality 0,
overriding any value present in the .qual file [??]; however X's
retain whatever value is present in the .qual file.

 If provided, quality information is used by phrap both in the
assembly itself (where discrepancies between high quality bases are
used to discriminate repeats from true overlaps) and in determining
the contig consensus sequence (which is formed as a mosaic of the
highest quality parts of the reads). Because phrap generates its own
quality measures (based on read-read confirmation) it performs
reasonably well even if no input quality is provided; however when it
is available, it is important to provide input data quality
information since this can substantially increase the accuracy of the
consensus, particularly in regions where there are strand-specific
effects on quality (e.g. compressions) -- in such cases the input
quality information may constitute the only basis for choosing one
strand over the other.

 If your sequencing data is from automated sequencing machines it is
strongly recommended that you generate the read sequences using the
basecalling program phred, which will produce an appropriate quality
file for input to phrap. On the basis of the trace characteristics,
phred computes a probability p of an error in the base call at each
position, and converts this to a quality value q using the
transformation q = -10 log_10(p). Thus a quality of 30 corresponds to
an error probability of 1 / 1000, a quality of 40 to an error
probability of 1 / 10000, etc.

 The quality value 99 is reserved for base calls that have been
visually inspected and verified as "highly accurate" (during editing),
and 98 for bases that have been edited but are not highly accurate
(these are converted to quality 0 in phrap). If two reads appear to
match but have discrepancies involving bases that have quality 99 in
both reads, phrap does not allow them to be merged during assembly.
At present this is the only way to break false joins made by phrap.

 If you wish to generate your own quality values you should be
prepared to experiment. It is particularly important that possible
insertion errors receive low quality, because in choosing the "consensus"
phrap tends to favor the reads with the highest total quality in a
given region. Also, if at all possible you should use quality values
that are defined in terms of error probabilities in the manner

described above, since to some extent phrap is tuned to expect these
(and its output qualities will then have a similar interpretation).

 If all input quality values are relatively small (less than 15),
phrap assumes that they do not correspond to error probabilities and
attempts to rescale them so that the largest quality value is
approximately 30. This allows different input scales to be used.

4. Vector screening

 Following creation of a FASTA file with the raw read sequences, it is
important to remove or screen out sequencing (subclone) vector
sequence before running phrap. (It is unnecessary to remove the
cloning (e.g. cosmid or BAC) vector, unless the inserts from multiple
overlapping clones are being assembled simultaneously; however it is
generally useful to remove at least the central part of the cloning
vector, since this then provides a natural point at which phrap can
break the circular sequence into a linear one). Unremoved sequencing
vector may cause reads to be identified as "possible chimeras", or
otherwise interfere with proper assembly. Some vector removal
programs may be unreliable at identifying vector sequences that are
rearranged or found in the lower quality part of the read, and I
recommend that you screen for sequencing vector using cross_match as
described here, whether or not you have already screened them using
another program.

To carry out the screening, first create a FASTA file, say "vector",
with all of the vector sequences you want to screen for (I use one
that contains all vector sequences used in any of the ongoing
sequencing projects, in case the vector is misidentified in the
current project). If your read file is named "C05D11.reads" (for
example), then run the command

> cross_match C05D11.reads vector -minmatch 10 -minscore 20 -screen > screen.out

(This uses somewhat more sensitive parameter settings than the
cross_match defaults). The '-screen' option causes a file named
"C05D11.reads.screen" to be created, containing "vector masked"
versions of the original sequences: i.e. any region that matches any
part of a vector sequence is replaced by X's. This ".screen" file is
what should be provided as input to phrap. The output from
cross_match (which has been redirected to the file screen.out in the
above example) lists the matches that were found (see below).

N.B. If you have created a .qual file for your reads (say
C05D11.reads.qual), be sure to rename or copy it to
C05D11.reads.screen.qual so that it will be recognized by phrap when
C05D11.reads.screen is used as the input FASTA file.

The phredPhrap script automatically carries out the above steps
(i.e. vector screening using cross_match, and renaming of the .qual
file); however it is your responsibility to make sure the vector
sequence file includes vector sequences appropriate for your cloning
and sequencing vectors.

IV. COMMAND LINE OPTIONS

 This section describes command line options available with
cross_match and phrap, grouped by category. Each option name is
followed immediately by the "default value" assumed by the program,
and a brief description. A '*' appearing as the default value
indicates that the option is a flag rather than a parameter; in this
case no value should be included on the command line after the option
name, and by default it is turned off. [None] means there is no
default, i.e. the parameter is not relevant when the option is
omitted.

 Unless otherwise indicated, an option can be used with either
cross_match or phrap.

1. Scoring of pairwise alignments

 The following options control the scoring of pairwise sequence
alignments. By default, matching residues receive a reward of +1,
mismatches get a penalty of -2, gap opening residues a penalty of -4
(= -2 - 2), and gap extension residues a penalty of -3 (= -2 - 1).
Word-nucleated high-scoring local alignments between sequences are
found by a modified Smith-Waterman approach (see next section), and
their scores are then complexity-adjusted (so matches between sequence
regions of highly biassed nucleotide composition have their scores
adjusted downwards). The above parameters are chosen such that
regions of two sequences that are about 70% or more identical will
tend to have a positive alignment score. For more stringent
comparisons, -penalty should be made more negative (e.g. a value of -9
will tend to find alignments that are 90% identical), and/or -minscore
should be increased; for more sensitive comparisons, a score matrix
should be used instead.

option name & default value

 -penalty -2
Mismatch (substitution) penalty for scoring alignment

 -gap_init penalty-2
Gap initiation penalty

 -gap_ext penalty-1
Gap extension penalty. Ignored when -gap1_only is set, since gaps
in that case may only have size 1.

 -ins_gap_ext gap_ext
 Insertion gap extension penalty (insertion in
subject relative to query).

 -del_gap_ext gap_ext
 Deletion gap extension penalty (deletion in
subject relative to query).

 -matrix [None]
 Score matrix (if present, supersedes -penalty). Note that when a
customized score matrix is used it is usually desirable to change the
default score thresholds for -minscore, -near_minscore, -gap1_dropoff
-gap1_minscore. Matrix format: (TO BE ADDED -- see examples included
in distribution). Matrix files for analyzing merged base reads must
contain (in addition to the matrix itself) a line that reads:

MERGED BASE DNA

 -raw *
 Use raw rather than complexity-adjusted Smith-Waterman scores.

2. Banded/gap1 search

 The following options control the region of the edit graph (of a
query-subject sequence pair) that is searched. In phrap and
cross_match (as opposed to swat, which performs full Smith-Waterman
comparisons), word-nucleated banded Smith-Waterman comparisons are
performed as follows. First, the set of input sequences is scanned to
find pairs of perfectly matching subsequences ("nucleating perfect matches"),
which are "maximal" in the sense that they cannot be extended in
either direction without introducing a discrepancy in one of the two
sequences, and which meet certain additional filtering criteria
described below. For each such nucleating perfect match, a band in the edit
graph that is centered on the diagonal defined by the match is
searched to find an optimal-scoring alignment. If there are multiple
nucleating perfect matches for a given pair of sequences, the union of the
corresponding bands is searched. The search is "recursive" in the
sense that if an optimal-scoring alignment is found whose score is at
least minscore, the remainder of the band is searched again;
consequently, multiple alignments may be found within a single band.
Note that because an entire band is searched, the nucleating perfect match
itself is not necessarily part of the optimal alignment, although it
usually will be.

An alternative comparison mode, using "gap1" alignments, is also
available. "Gap1" alignments are alignments that extend the (gapfree)
alignment defined by the nucleating perfect match to the left and to
the right, allowing arbitrarily many residue mismatches (appropriately
penalized), but at most one gap character, in each direction. Such
alignments have a maximum of two gap characters, and are thus more
restrictive than banded Smith-Waterman (bSW) alignments. However they
are significantly faster to find, and for short queries (< 40 bp) will
detect most alignments that are detectable at all by bSW; for longer
queries, the -fuse_gap1 option (see below) will fuse overlapping gap1
alignments into a longer alignment that may contain more than 2 gaps
(each gap still having a maximum size of one, however). Gap1
alignments also provide a useful filtering step prior to bSW. In
contrast to banded search, for gap1 alignments the nucleating perfect
match will always be part of the alignment.

 A number of (optional) criteria can be used to filter the set of
nucleating perfect matches that are used. If a maximal nucleating
perfect match falls entirely within an annotated repeat in the query
or repeat sequence it is rejected. Otherwise, if it has length at
least -maxmatch, it is (tentatively) accepted. Otherwise (i.e. if it
is neither accepted nor rejected by those criteria), if the
complexity-adjusted length (or actual length, if -word_raw is
specified) is less than -minmatch, or if the matching sequence occurs
more than -max_group_size times in query file sequences, it is
rejected. (The latter two criteria provide independent mechanisms for
deprecating frequently occurring regions of size less than -maxmatch.)
A final filter is then applied to those nucleating perfect matches not
rejected by the preceding criteria, as follows. The highest scoring
gap1 alignment extending the nucleating perfect match is found, and if
this alignment has (non-complexity-adjusted) score less than
-gap1_minscore, the match is rejected. Nucleating perfect matches not
rejected by any of these criteria are then used to define a banded
Smith-Waterman search as described above (unless the option -gap1_only
is specified).

 -minmatch 14 (for DNA sequences) 4 (for protein sequences)
 Minimum length of nucleating perfect match for banded Smith-Waterman or gap1
comparison. If minmatch = 0, a full (non-banded) comparison is done
[N.B. NOT PERMITTED IN CURRENT VERSION]. Increasing -minmatch can
dramatically decrease the time required for the pairwise sequence
comparisons; in phrap, it also tends to have the effect of increasing
assembly stringency. However it may cause some significant matches to
be missed, and it may increase the risk of incorrect joins in phrap in
certain situations (by causing implied overlaps between reads with
high-quality discrepancies to be missed).

 -maxmatch 20 (for DNA sequences) 4 (for protein sequences)
 Maximum required length of nucleating perfect match (i.e. non-repeat_screened
nucleating perfect matches at least this long are always used, regardless of
complexity adjustment or max_group_size). Cannot be set larger than
127, or smaller than -minmatch (input value is automatically adjusted
to meet these criteria if necessary). Note that setting maxmatch =
minmatch has the effect of turning off all filtering of nucleating perfect
matches (i.e. both complexity adjustment and max_group_size.) This
will increase sensitivity somewhat, at the expense of significantly
increased running time.

 -max_group_size 10 (for phrap) 0 (for cross_match)
 Group size (maximum number of allowed occurrences of the nucleating perfect
region in query file, forward (i.e. uncomplemented) strands). If 0,
group size is ignored -- this is the default for cross_match, and is
the recommended setting for phrap assemblies of very short reads when
coverage depth is expected to be extremely uneven (e.g. Solexa EST
reads).

 -word_raw *
 Use raw rather than complexity-adjusted length for the nucleating perfect
match, in testing against minmatch (N.B. maxmatch always refers to raw
lengths). (Default behavior if -word_raw is not set is to adjust

length to reflect complexity of matching sequence).

 -bandwidth 14
 1/2 band width for banded Smith-Waterman searches (full width is 2
times bandwidth + 1). Decreasing bandwidth decreases running time, at
the expense of sensitivity to detect large gaps. Phrap assemblies of
clones containing long tandem repeats of a short repeat unit (< 30 bp)
may be more accurately assembled by decreasing -bandwidth; -bandwidth
should be set such that 2 bandwidth + 1 is less than the length of a
repeat unit. Note that -bandwidth 0 can be used to find gap-free
alignments. If read length is short (e.g. with Solexa sequence data)
it is generally pointless to use a large value for -bandwidth because
large indels in these reads cannot be detected anyway (with the usual
gap penalty scoring). -bandwidth is ignored when -gap1_only is specified.

 -repeat_screen 0
 Controls how nucleating perfect matches falling entirely within
repeats are treated. If 0, repeat information is not used in
evaluating nucleating perfect matches; if 1 or 3, nucleating perfect
matches lying entirely within repeat tags in query file are ignored
(i.e. not used to nucleate banded Smith-Waterman or gap1 search); if 2
or 3, nucleating perfect matches lying entirely within lower case
regions in subject file, or spliced matches for which either splice
junction falls in such a region, are ignored. Note that it is up to
the user to provide the appropriate repeat information in the input
sequence files (see above, section III.2).

 -gap1_minscore 17
 Minimum score (not complexity-adjusted) of 'gap1' extensions of
nucleating perfect match. Can be turned off by setting to 0; however
this is not recommended, because use of -gap1_minscore substantially
lowers running time with very little sacrifice of sensitivity. Should
be adjusted if non-default scoring is used. -gap1_minscore is ignored
when -gap1_only is set. If greater than -minscore, it is reset to
equal -minscore.

-gap1_only *
 If set, only gap1 alignments are considered. The parameters -gap_ext,
-bandwidth, -gap1_minscore (which only applies to filtering) and
-near_minscore will then be ignored. If -gap1_only is used with long
queries, it is recommended that -fuse_gap1 also be set.

-gap1_dropoff -12
 Maximum score dropoff permitted in gap1 alignments, before
terminating search. Should be adjusted if non-default score matrix is used.

-fuse_gap1 *
 Fuse overlapping gap1 alignments. This is only applicable when gap1
alignments are generated using -gap1_only, -spliced_word_gapsize, and/or
-spliced_word_gapsize2. The fusing is done after -minmargin and
-minscore filtering is applied. This option is generally only useful
with longer sequences.

-globality 0
 (Cross_match only). Controls extent (with respect to query) of gap1

alignments. Settings:
 0 local alignments only
 1 semiglobal to left (i.e. alignment forced to extend to left (5') end of
query)
 2 semiglobal to right (alignment forced to extend to right (3') end of
query)
 3 global (alignment forced to extend to both ends of query)

This option is currently available only with -gap1_only,
-spliced_word_gapsize, and/or -spliced_word_gapsize2 alignments, and
it does not apply to the gap1 alignments that are used in the
filtering step performed prior to a banded search (which use
-gap1_minscore, and are always local). Only recommended for use with
short reads. -globality 1 increases specificity when the 5' query
bases are expected to be most accurate (as with Solexa data).
-globality 3 (forcing global alignments) is useful for some purposes
(e.g. in analyzing error rates as a function of position or quality in
short reads) but can reduce sensitivity when there is a higher error
rate at the 3' end of the read.

[DISCUSS NUCLEATING PERFECT MATCHES FOR MERGED BASE READS.]

3. Filtering of matches

 The following options control which matches are reported (cross_match)
or used in assembly (phrap).

 -minscore 30
 Minimum alignment score (complexity-adjusted, unless -raw is set (see
IV.1 above)). Should be adjusted if non-default score matrix is used.

 -near_minscore minscore
 (cross_match only). Typically used when comparing EST and cDNA query
sequences to a genomic sequence using cross_match, to increase
sensitivity to detect short low-scoring exonic matches that are in the
vicinity of higher-scoring ones. Matches having scores that are at
least -near_minscore but less than -minscore are reported only if they
are within a distance max_intron_length, and in the appropriate order
and orientation, with some match having score >= minscore and
involving the same query and subject sequences. Note that there is no
"-near_minmatch" parameter, so if you want to increase sensitivity at
the nucleating perfect match step you would need to decrease
-minmatch. Should be adjusted if non-default scoring is
used. -near_minscore is turned off when -gap1_only is specified.

-max_intron_length 10000
 (cross_match only) See description of -near_minscore, above.

-vector_bound 80 (for phrap) 0 (for cross_match)
 Number of potential vector bases at beginning of each read. Matches
that lie entirely within this region are assumed to represent vector
matches and are ignored. Note that for assembling very short
(e.g. Solexa) reads, the default value is much too high!! For
cross_match, -vector_bound is only utilized when there are no subject
files, and the default value is 0 instead of 80.

 -masklevel 80 (101 for merged base reads, or when there is no subject file)
 (cross_match only). Masklevel controls the grouping of matches
according to their domains (the segment of the query that is aligned),
which is useful when different portions of the query may match
different subject sequence regions (e.g. cDNA queries vs genomic
subject, or chimeric sequencing read queries). Two matches for the
same query are considered to be in the same "query domain group" if at
least masklevel% of the bases in the domain of either one of them is
contained within the domain of the other. Thus for the default value
of 80, matches are assigned to the same group if the domain of either
one is at least 80% contained within the domain of the other.
 Special cases:
 -masklevel 0 all matches form a single query domain group
 -masklevel 101 all matches form a single query domain group, but
-minmargin is inactivated thus causing every match with score >=
minscore to be reported.

For merged base reads, -masklevel is always set to 101, because
overlapping matches can correspond to different sets of peaks and thus
be unrelated to each other.

-minmargin 0.5
 (cross_match only, & there must be separate query & subject
files). The score margin for a match is defined to be the difference s
- best_other_score, where s is the match score, and best_other_score
is the highest score occurring for any other match in the same query
domain group (as defined above under '-masklevel') for that query.
Only matches with score margin at least -minmargin are
reported. Specifically (letting n denote a positive integer):

 -minmargin n report only those highest-scoring matches (for a given query
domain group) for which no other matches have score within n of it
 -minmargin 0.5 report a single highest-scoring match for each query
domain group. If there is more than one match with this score, one is
chosen at random; in the case of spliced word matches, this random
choice is made from among those highest-scoring matches having minimal
span in the subject sequence.
 -minmargin 0 report all highest-scoring matches in each query domain
group
 -minmargin -n report any match whose score
is within n of the highest-scoring match in the query domain group

In particular -minmargin 1 cause the top-scoring match to be reported
only if no other matches have the same score; -minmargin -1 will cause
all matches having a score within 1 of the top scoring match (and at
least minscore) to be reported.
 Note that the -minscore filter is also applied. For -minmargin >=
0.5, at most one match per query domain group is reported; for
-minmargin < 0.5, multiple matches per query domain group may be
reported. The value of -minmargin becomes irrelevant when -masklevel is
101.

4. Input data interpretation

 The following options influence how input data (including read names)
are interpreted.

 -default_qual 15
 Quality value to be used for each base, when no input .qual file is
provided. Note that a quality value of 15 corresponds to an error rate
of approximately 1 in 30 bases, i.e. relatively accurate sequence. If
you are using sequence that is substantially less accurate than this
and do not have phred-generated quality values you should be sure to
decrease the value of this parameter.

 -subclone_delim .
 (phrap only). Subclone name delimiter: Character used to indicate end
of that part of the read name that corresponds to the subclone name

 -n_delim 1
 (phrap only). Indicates which occurrence of the subclone delimiter
character denotes the end of the subclone name (so for example
 -subclone_delim _ -n_delim 2
means that the end of the subclone name occurs at the
second occurrence of the character '_'). Must be the same for all
reads!

 -group_delim _
 (phrap only). Group name delimiter: Character used to indicate end of
that part of the read name that corresponds to the group name
(relevant only if option -preassemble is used); this character must
occur before the subclone delimiter (else it has no effect, and the
read is not assigned to a group).

 -trim_start 0
 (phrap only). Number of bases to be removed at beginning of each read.

5. Assembly

 The following phrap-only options are used to control completeness and
stringency of assembly; note that the options -minmatch, -bandwidth,
-penalty, -gap1_minscore, and -minscore discussed above also affect assembly
stringency.

 -forcelevel 0
 (phrap only). Relaxes stringency to varying degree during final
contig merge pass. Allowed values are integers from 0 (most
stringent) to 10 (least stringent), inclusive.

 -bypasslevel 1
 (phrap only). Controls treatment of inconsistent reads in merge.
Currently allowed values are 0 (no bypasses allowed; most stringent)
and 1 (a single conflicting read may be bypassed).

 -maxgap 30
 (phrap only). Maximum permitted size of an unmatched region in
merging contigs, during first (most stringent) merging pass.

 -repeat_stringency .95
 (phrap only). Controls stringency of match required for joins. Must
be less than 1 (highest stringency), and greater than 0 (lowest
stringency).

 -revise_greedy *
 (phrap only). Splits initial greedy assembly into pieces at "weak
joins", and then tries to reattach them to give higher overall score.
Use of this option should correct some types of missassembly.

 -shatter_greedy *
 (phrap only). Breaks assembly at weak joins (as with -revise_greedy)
but does not try to reattach pieces.

 -preassemble *
 (phrap only). Preassemble reads within groups, prior to merging with
other groups. This is useful for example when the input data set
consists of reads from two distinct but overlapping clones, and it is
desired to assemble the reads from each clone separately before
merging in order to reduce the risk of incorrect joins due to
repeats. The preassemble merging pass is relatively stringent and not
guaranteed to merge all of the reads from a group.
 Groups are indicated by the first part of the read name, up to the
character specified by -group_delim.

 -force_high *
 (phrap only). Causes edited high-quality discrepancies to be ignored
during final contig merge pass. This option may be useful when it is
suspected that incorrect edits are causing a misassembly.

6. Consensus sequence construction

 The following phrap-only options affect the weighted directed graph
that is used to find the consensus sequence. Increasing their values
will reduce the size of the graph, which should reduce memory
requirements for the phrap run (substantially in some cases) but may
decrease the accuracy of the consensus sequence that is found.

 -node_seg 8
 (phrap only). Minimum segment size (for purposes of traversing
weighted directed graph).

 -node_space 4
 (phrap only). Spacing between nodes (in weighted directed graph) .

 -contig_graph_weights 0
 (phrap only). Weighting scheme; currently permitted values are 0 and
1. The value 0 causes the weights to be set equal to the quality
values; 1 causes them to be set to the scaled error probabilities (the
weight attached to a base is then e_0 - e, where e is the error probability
for that base and e_0 is the error probability corresponding to
-trim_qual).

7. Output

 The following options control the creation or formatting of certain
output files, and of the standard output.

 -tags *
 Tag selected lines in the standard output, to facilitate
parsing. (N.B. this does NOT refer to the phrap-generated tags that
are included in the .ace file and viewable in consed.)

 -screen *
 (cross_match): Create a ".screen" file. This is a FASTA format
sequence file, in which any sequence region in a sequence in the first
input sequence file that matches some region in a sequence in the
second (or later) file is replaced by X's. This option is primarily
used to create "vector-masked" copies of the reads prior to phrap
assembly.
 (phrap): when the -old_ace or -new_ace option is specified (see
below), this option causes parts of the read sequences that consist of
phrap-inferred sequencing vector and chimeric segments to be replaced
by X's in the .ace file. (The "phrap-inferred sequencing vector"
consists of the beginning part of the read that either does not match
any other read, or matches only the beginning parts of other reads;
"phrap- inferred chimeric segments" consist of segments of the read
that match other reads but do not match the consensus at that
location.)

 -old_ace *
 (phrap only). Create ".ace" file in old style format.

 -new_ace *
 (phrap only). Create ".ace" file in a new style format (STRONGLY
recommended over old_ace !!)

 -ace *
 (phrap only). Same as -new_ace.

 -view *
 (phrap only). Create ".view" file suitable for input to phrapview.

 -qual_show 20
 (phrap only). Cutoff for flagging "low_quality" regions in contig
sequence and "high quality" discrepancies between read and
contig. Bases in the .contigs and .ace file are lower case if and only
if their LLR-converted quality values are below this value.

 -print_extraneous_matches *
 (phrap only). Print information about non-local matches between
contigs.

 -print_word_data *
 Print information about nucleating perfect matches.

 -exp [None]
 (gcphrap only). Name of a directory in which output experiment files

are to be placed.

 -alignments *
 (cross_match only). Display the alignment for each reported match.
When the subject sequences are large (e.g. whole chromosomes), there
is currently a speed advantage to having them split among multiple
subject files (e.g. one file per chromosome) rather than all included
in a single file.

-align_extend 0
 (cross_match only). # residues to display past end of the
SWAT-aligned region, when alignments are displayed (using
-alignments).

 -discrep_lists *
 (cross_match only). Give list of sequence discrepancies, and
qualities, for each reported match. If -spliced_word_gapsize is set,
putative introns bridged by the spliced word are included in the list,
as large deletion ('D-n' where n is the intron size) discrepancies.

 -discrep_tables *
 (cross_match only). Give table of discrepancies (by quality) for each
match (default is to display a single table, that combines results for
all matches).

 -score_hist *
 (cross_match only, & there must be separate query & subject
files). Print histogram of match scores for each query domain group
(as defined above under '-masklevel'). Each score histogram appears as
a separate line following all displayed matches for a given query (if
any), with the following format:
 query_name domain_start..domain_end all scores (counts): score(count)
score(count) score(count) ...
For example, the line
 8-1-237-906_0 2..35 all scores(counts): 18(1) 20(2) 36(1)
indicates that the query sequence named 8-1-237-906_0 had one match
with score 36, two matches with score 20, and one match with score 18,
in the domain (region) starting at base 2 and ending at base 35. Note
that all matches meeting the specified -minscore threshold are
counted, regardless of the settings of -masklevel or -minmargin.
When -spliced_word_gapsize is set, the 1st count after score is no. of
unspliced matches, 2d count is no. of spliced matches. [give example]

-output_nonmatching_queries *
 Create fasta and .qual files (named by appending the suffixes
".nonmatching" and ".nonmatching.qual" to the original query file
name) containing the query sequences which failed to have any matches
in the analysis.

-output_bcdsites *
 (cross_match only, & there must be separate query & subject files).
Create an output file (named by appending the suffix ".bcdsites" to
the original query file name) that indicates subject sequence positions
that are confirmed by and/or have high-quality discrepancies with
respect to the query sequences.

 The file format is as follows. There are three header lines, each
beginning with the character '#', which indicate the cross_match
command line, version, and run time for the run which produced the
file. The remainder of the file consists of 'event' lines with the
following format:

sub pos event,n_f,n_r,max_score,max_marg,max_qual
[event,n_f,n_r,max_score,max_marg,max_qual] ...

where sub = name of the subject sequence (e.g. chromosome name)
 pos = position (origin 1) within the subject sequence at which the event
starts
 event = one of the following:
 C-n (n a positive integer) segment of length n in subject
confirmed by a query
 D-n or d-n segment of length n in
subject deleted in a query (putative
introns revealed by EST alignments using spliced_word_gapsize are of this type;
lower-case 'd' is reserved
for lower (bottom) strand introns)
 S-b (b = A,C,G, or T) site at which a query has high-
quality base b instead of
 the subject sequence base
 I-s (s a nucleotide sequence) site of high-quality inserted
sequence s in query sequence with respect
 to the subject sequence
 L-s site at which a query sequence has a high-quality
extension s to the left of position
pos in the subject sequence
 R-s (seq a nucleotide sequence) site at which a query
sequence has a high-quality extension s
to the right of position pos in the subject sequence
 n_f = number of forward (i.e. top-strand) queries supporting the event
 n_r = number of reverse (i.e. bottom-strand) queries supporting the event
 max_score = maximum score of all query alignments supporting the event
 max_margin = maximum score margin (see definition under -minmargin, above)
of all query alignments supporting the event
 max_qual = maximum quality of query base in alignments
supporting the event

 The events for a given subject sequence are listed in increasing
positional order (pos). For C and D events, the -n is omitted if n =
1. Sequences s for events I, L, and R are always given in top-strand
5' to 3' orientation. max_qual for C (confirmation) events is
currently always 0, because no quality check is performed (this will
be changed in future). Max_score and max_margin together provide a
measure of how confidently a supporting query maps to this
position. Note that the availability of this information in the
bcdsites file means that the initial cross_match run can be performed
with fairly liberal settings for -minscore, -minmargin, and
-bcdsites_qual_threshold; higher stringencies can be used to filter
out lower-confidence events from the bcdsites file later, without
re-running cross_match.

 For example, the line

CHROMOSOME_X 250526 C,6,1,30,0,0 R-GATGTT,0,1,30,0,40 D-294,2,1,31,0,26

in the bcdsites file from a spliced-alignment run (using
-spliced_word_gapsize 2000) of Solexa cDNA reads against the
C. elegans genome indicates that at position 250526 in the X
chromosome, the subject sequence base is confirmed by 6 top strand and
1 bottom strand reads, with a maximum score of 30, while two top
strand and one bottom strand reads instead support the existence of a
294 bp intron beginning at this position, and one bottom strand read
extends to right from this position with additional bases GATGTT (this
is likely an another read supporting the intron, but which failed the
splice alignment because it had too few bases on the other side of the
intron). The last base of the intron would be 250526 + 294 - 1 =
250819. The intron is for a top (upper) strand gene since upper case
'D' is used. Note however that for all of these reads max_margin is
0, implying that the supporting query sequencies all have
equal-scoring matches elsewhere in the genome, so placement of these
queries in the genome is ambiguous and the intron cannot be considered
to be confirmed by these data.

-bcdsites_qual_threshold 25
 (Only applies with -output_bcdsites). Quality threshold for flagging
discrepancies in .bcdsites file. Quality is ignored for purposes of
identifying confirmed bases, and for 'large' insertions or deletions
(e.g. introns in spliced alignments of ESTs to genome).

8. Miscellaneous

 -retain_duplicates *
 (phrap only). Retain exact duplicate reads, rather than eliminating
them.

 -max_subclone_size 5000
 (phrap only). Maximum subclone size -- for forward-reverse read pair
consistency checks.

 -trim_penalty -2
 (phrap only). Penalty used for identifying degenerate sequence at
beginning & end of read.

 -trim_score 20
 (phrap only). Minimum score for identifying degenerate sequence at
beginning & end of read.

 -trim_qual 13
 (phrap only). Quality value used in to define the "high-quality" part
of a read, (the part which should overlap; this is used to adjust
qualities at ends of reads).

 -confirm_length 8
 (phrap only). Minimum size of confirming segment (segment starts at
3d distinct nuc following discrepancy).

 -confirm_trim 1
 (phrap only). Amount by which confirming segments are trimmed at
edges.

 -confirm_penalty -5
 (phrap only). Penalty used in aligning against "confirming" reads.

 -confirm_score 30
 (phrap only). Minimum alignment score for a read to be allowed to
"confirm" part of another read.

 -indexwordsize 12 (for DNA sequences) 4 (for protein sequences)
 Size of indexing (hashing) words, used in searching for nucleating perfect
matches between sequences. Cannot be set larger than
minmatch. Increasing indexwordsize while holding minmatch constant may
reduce running time somewhat but increase memory requirements, without
affecting sensitivity.

-indexwordsize2 4
 (Merged base read data only). Size of indexing words used in
searching for nucleating perfect matches involving 2d peaks. Cannot be set
larger than indexwordsize.

The following cross_match-only parameters are used in alignments of
cDNAs or ESTs (as queries) to genomic sequence

-spliced_word_gapsize 0
 (cross_match only, & there must be separate query & subject
files). Look for nucleating perfect matches that span potential splice
junctions (i.e. where a region in the query matches a 'split' region
in the genomic sequence, flanking a potential intron). Only U2-type
(GY..AG) introns (on either strand), in the size range
-min_intron_length to -spliced_word_gapsize are currently considered;
and the nucleating perfect region must include at least minmatch/2
perfectly matching bases to the left of the splice junction and
minmatch/2 perfectly matching bases to the right of the
junction). Only gap1 alignments (see above) are considered in
extending the spliced match. Only a single spliced word (a single
intron) can be found per alignment; however, multi-intron alignments
can be obtained by using -fuse_gap1. When spliced_word_gapsize is
set, ordinary (unspliced) nucleating perfect matches are also found,
and used to nucleate banded Smith-Waterman searches (or gap1 searches,
if -gap1_only is set) in the usual way. Spliced alignments are
penalized using an intron-size-dependent scoring function (currently
based on an assumed lognormal size distribution with parameters
derived from analysis of C.elegans introns; this will change in the
future).
 Reported matches nucleated by a spliced_word are indicated by
prefixing the word "SPLICED" to the match summary line.

-spliced_word_gapsize2 0
 (cross_match only, & there must be separate query & subject
files). Like -spliced_word_gapsize, but applies only to potential
splices in which the 'downstream' site (which can be either a 5' or a
3' potential splice site, depending on strand) occurs near the

boundary of a region having a match with (raw) score at least
-minscore. Since there are far fewer such sites,
-spliced_word_gapsize2 can be set much larger than
-spliced_word_gapsize without a significant time penalty. Both
-spliced_word_gapsize and -spliced_word_gapsize2 can be set in the
same run. Note that because the match condition applies only to the
downstream site, use of -spliced_word_gapsize2 can give slightly
different results when run on the complemented genome rather than the
original genome.

-spliced_match_left 0
 (cross_match only) Only applies when -spliced_word_gapsize2 is
positive. # of positions to left of a left match boundary to consider,
for potential splice site locations. Must be non-negative.

-spliced_match_right 20
 (cross_match only) Only applies when -spliced_word_gapsize2 is
positive. # of positions to right of a left match boundary to consider,
for potential splice site locations. Must be non-negative.

-word_intron_margin 2
 (cross_match only) Number of bases at each intron end to display, in
'spliced' alignments found using -spliced_word_gapsize and reported
using -alignments. Must be at least 2.

-min_intron_length 30
 (cross_match only)

[THE FOLLOWING ARE CURRENTLY NOT SUPPORTED!!]

-splice_edge_length 0
 (cross_match only) Length of region at each end of alignments to
scan for potential splice sites. If 0, no analysis is done. If > 0,
then the last splice_edge_length bases of alignment, and the
splice_edge_length bases beyond end of alignment, are scanned. (Done
for both ends). It is assumed that the subject sequence is genomic,
and the query sequence is EST or cDNA.

-max_overlap 20
 (cross_match only)

-min_exon_length 6
 (cross_match only)

V. VIEWING PHRAP ASSEMBLIES WITH OTHER PROGRAMS

1. Consed

 Consed is the recommended sequence editor for use with phrap. Its
development has been closely tied to the development of phrap and it
has been designed to take advantage of the information regarding the
assembly that is generated by phrap (e.g. phrap's consensus sequence
and quality values, and tags indicating potential assembly problems
and various data anomalies such as chimeras and compressions).

 To use consed with phrap, ace files must be generated during the phrap
run using the flag -new_ace or -old_ace on the command line. This is done
automatically if you use the script phredPhrap to carry out all of the
data processing steps.

 For additional information, consult consed documentation.

2. Phrapview

 Phrapview is a graphical tool that provides a "global" view of the
phrap assembly, complementary to the "local" view provided by the
sequence editor CONSED; it will become obsolete when a similar global
view is added to CONSED.

a. Installation
 Phrapview is written in perl/Tk; to run it you will need to have
installed on your system a recent version of perl (perl5 or later),
together with the perl/Tk perl module written by Nick Ing-Simmons. The
perl/Tk scripts can be obtained from any CPAN site in
modules/by-authors/Nick_Ing-Simmons/, for example:

ftp://ftp.perl.org/pub/CPAN/modules/by-authors/Nick_Ing-Simmons/

The latest version of perl/Tk is the most recent Tk800.xxx.tar.gz file
(where xxx is the most recent version number). The latest version of
perl can also be obtained from any CPAN site in /src, for example

ftp://ftp.perl.org/pub/CPAN/src/perl5.005_02.tar.gz

(Perl 5.005_02 was the most recent version when this was written.)

If you have problems with running phrapview, please make sure that you
have both a recent version of perl installed and a recent version of
perl/Tk. If you are unsure whether your version is recent enough, you
or your system administrator should download the latest sources and
install them.

b. Running phrapview

 Phrapview is invoked with the command

 phrapview filename

where filename is the name of a ".view" file that was created by
running phrap with the -view option.

N.B. The format of the .view file is still under development. To
ensure that phrapview will read correctly the .view file produced by
phrap, make sure that both programs (phrap and phrapview) were part of
the same release.

The following information can be displayed:

 (i) Basic information concerning the numbers of reads, singletons,
contigs, chimeras, etc. Each contig, and each chimeric read, is
represented by a horizontal black line proportional in length to the
contig or read size. Note that although they are shown separately in
this display, chimeric reads in fact generally are incorporated by
phrap into one of the contigs, in a region that corresponds to one of
the two chimeric pieces; the location of this is indicated by the
black "chimera match" line connecting the chimera to a contig (see
below).

The following information requires pressing an appropriate "button" to
display:

 (ii) Depth of coverage. Graphs (in yellow) above and below the
contig line indicate the depth of coverage (i.e. number of reads
aligned against the contig) on each strand at each position; the
horizontal orange lines correspond to a depth of 10. In addition to
the ordinary depth of coverage (which counts all reads in the contig,
and is mainly useful to indicate regions where an abnormal deficit or
excess occurs), the "reduced depth" can be displayed. This counts only
reads that are non-chimeric, have a positive LLR score against the
contig, and have no positive LLR scoring match to a read elsewhere in
the assembly -- i.e. the "confidently placed" reads. (See phrap.doc
for a description of LLR scores). Misjoins usually occur in places
where the reduced depth is 0 on both strands.

 Regions of the contig where the depth is 0 on one or both strands are
indicated in red.

 (iii) "Matches" and "links". "Matches" are pairwise read matches
between reads in different parts of the assembly, and are indicated by
a single (curved or straight) line connecting the midpoints of the two
matching regions. Contig matches (between two non-chimeric reads in
the assembled contigs) and chimera matches (between a chimeric read
and itself or another read) can be displayed separately. "Links"
connect the startpoints of two reads that derive from the same
subclone: forward-reverse links correspond to reads from opposite ends
of a subclone insert, while same-strand links correspond to walking or
duplicated reads in the same direction on the insert. Links will only
be indicated properly if the read naming convention assumed by phrap
is used (see section III.1 above).

 Each match or link is considered to be in one of three classes,
indicated by color: "problems" (red), which indicate serious
discrepancies or a significant possibility of incorrect, incomplete,
or non-unique assembly; "ok" (black), which tend to confirm the
assembly or are otherwise consistent with it; and "grayzone" (blue or
green), which may in some cases indicate problems but are probably ok.
Links are considered "ok" if the two read starts meet the expected
spacing and orientation constraints, otherwise they are marked as
"problems" (in many cases however these reflect subclone tracking
errors rather than assembly errors). Matches are considered "ok", and
are not shown, if they are between reads assembled in the same
location, or have LLR scores below the cutoff. Matches are considered
"problems" if they have LLR scores above the cutoff, are non-local,

and involve regions where the reduced depth is 0. "Problem" matches
between or within large contigs often indicate the presence of
near-perfect repeats, which may or may not have been misassembled; or
(in some cases) a join that was missed. "Problem" matches between a
small (e.g. singleton) contig and a large one typically represent
cases where a read could not be assembled into its proper location by
phrap, due generally to some anomaly involving it (e.g. an internal
region of low quality data). Non-local matches with LLR scores above
the cutoff which do not lie in regions of reduced depth 0 are
considered to be "grayzone". Usually these involve isolated pairs of
reads each of which extends part way into a repeat, such that the
overlapping region is too small to contain high-quality discrepancies.
The fact that the reduced depth is non-zero means that there are other
reads in the same region which do not have any positive LLR scores to
the other region, so it is unlikely that there is a significant
misassembly in such cases, although it is possible that one of the two
matching reads may have been incorrectly placed.

 Chimeras generally have one "ok" match (to the site where the read
was assembled) and one or more "problem" matches to the region from
which the other part of the chimera derives (sometimes these matches
all have negative LLR scores and are thus not shown with the default
LLR cutoff). Some chimeras actually represent subclones with internal
deletions; these tend to be obvious since the two pieces map to nearby
locations in some contig and are in the same orientation there.

 Double-headed arrows on matches indicate that the matching regions
are on opposite strands; double-headed arrows on links indicate that
the orientation of the two reads is inconsistent with the read names
(i.e. forward-reverse pairs that point in the same direction, or same
strand pairs that point in opposite directions; these are colored as
"problems" if the reads are in the same contig).

 (iv) Low quality contig bases (bases having phrap qualities that are
lower than a specified threshold), and high quality discrepancies
(positions where there is an aligned read discrepant with the contig
base and having a phrap quality that exceeds the threshold). A
horizontal green line above the contig indicates the quality
threshhold value ("qual cutoff"). Low quality contig bases are
indicated by a vertical blue line drawn from a height corresponding to
the contig quality value, up to the threshhold line; high quality
discrepancies are indicated by a vertical blue line drawn from a
height corresponding to the discrepant read's quality, down to the
threshhold line. Thus in each case longer lines are more "serious"
(reflect a larger deviation from the threshhold, in the wrong
direction).

 Passing the mouse pointer (slowly!) over an item of types ii-iv
above results in its being highlighted (converted to yellow); it
remains highlighted until the pointer is moved over another item, or a
contig line. Textual information about the highlighted item is shown
in a box in the top right region of the display.

 Several parameters can be changed by entering new values in
appropriate boxes at the bottom of the display. Four different

magnifications can be changed: horizontal magnification; the "spacing
magnification" which determines the vertical spacing between contigs;
and the depth and quality magnifications, which affect the scales used
for coverage depth and quality. Values of each of these are specified
as percents of the original (startup) magnification. The role of LLR
cutoff, and qual cutoff are described above. The unalign parameter
refers to the size of the largest segment involved in the pairwise
read match that is unaligned against the contig sequence. If large,
such segments may indicate a misplaced read or (occasionally) an
otherwise undetected chimera. Min fwd-rev and max fwd-rev refer to
the minimum and maximum allowed separation (in bp) between (the starts
of) forward-reverse read pairs; i.e. these represent the minimum and
maximum allowed subclone insert size. Separations outside this range
(or in the wrong orientation) are marked as problems. Min ss and max
ss are the minimum and maximum spacing between same-strand reads (i.e.
size of a walking step).

 The display is updated to reflect changes made in the above
parameters only after a relevant button (Show Contig Matches, etc.) is
pressed.

 Colors can be changed by altering the variable definitions that occur
near the beginning of the phrapview source file, and re-running the
program.

3. Gap

 Versions of phrap and cross_match ("gcphrap", for "gap-compatible phrap",
and "gccross_match" for "gap-compatible cross_match") suitable
for use with the Staden gap4 package may be created as follows: Obtain
relevant source files from the Staden web site
(http://www.mrc-lmb.cam.ac.uk/pubseq/index.html). Put these in the
same directory as the phrap source files, and enter the commands

> make gcphrap
> make gccross_match

 Consult the Staden web site for instructions on using gcphrap and gccross_match
in
conjunction with gap4, including input and output file formats. In
addition to the usual phrap command line options, gcphrap accepts an
option -exp, which is used to specify the name of a directory in which
the output experiment files will be placed.

VI. PHRAP OUTPUT

Phrap output includes the "standard output", the "standard error", and
a series of output files. The latter receive names that consist of the
input read file name, with an appropriate suffix (e.g. ".ace")
appended.

The standard output is described below. The other files

are

 (i) The standard error (which is normally written to the terminal,
but may be redirected to a file). This contains information
indicating the point in the run that phrap has reached, summary
results for some of the steps, and various warning and error messages.

 (ii) The .contigs file. This is a FASTA file containing the contig
sequences (without pads; bases in this file are upper case if and only
if the quality is >= qual_show). These include singleton contigs
consisting of single reads with a match to some other contig, but that
couldn't be merged consistently with it.

 (iii) The .contigs.qual file. This has the phrap-generated qualities
for the contig bases.

 (iv) The .singlets file. A FASTA file containing the singlet reads
(i.e. the reads with no match to any other read).

 (v) The .log file. This includes various diagnostic information, and
a summary of aspects of the assembly; it is probably only of interest
to me, for trouble-shooting purposes.

 (vi) The .problems file. Again this is probably only of interest to
me.

 (vii) The .ace file (produced when the options -new_ace or
-old_ace is used). This file is required for viewing the assembly
using consed. It's format is described in the consed documentation.

 (vii) The .view file (produced when the option -view is
used). Required for viewing the assembly using phrapview.

Standard output:

 The standard output has the goal of giving as complete a summary as
possible of the final assembly, including data anomalies and possible
sites of assembly error. The information it provides includes a list
of the contigs and the reads they contain, information about the
quality of the alignments of the reads against the contig sequence,
matching regions within and between contigs, suspect reads (probable
deletions or chimeras), sites of possible errors in the assembly or
contig sequence (e.g. discrepancies between reads and contig
sequence), and results of the forward/reverse read consistency checks.

The output includes, in order:

 (i) Summary information about the run conditions (command line,
phrap version number, and parameter settings) and the input data
file(s) (sequence and quality, template/read counts and read
orientations, chemistry). It is worth reviewing this information
routinely for possible problems with the input data, such as parameter
misspecification, read nomenclature that is causing faulty inferences
by phrap regarding templates or chemistry, or a missing quality file.

 (ii) Low-quality regions at beginnings or ends of reads which
consist largely (>50 %) of a single nucleotide, due (usually) to
degenerate signal. These are internally converted to N's, to prevent
them from causing spurious matches which could interfere with
assembly. (Note that the .ace and .singlets files output by phrap will
contain the N's in place of the original sequence).

 (iii) Exact and near-exact duplicate reads. Exact duplicates, which
probably represent duplicate entry of the same data, are excluded from
assembly (this feature may be turned off using the option
-retain_duplicates). The near-exact duplicates are only listed if they
are from different subclones (insofar as this information is available
to phrap!).

 (iv) Probable unremoved sequencing vector, detected as regions at
beginnings of reads which match only the beginnings of other reads.
Phrap's method for identifying these is not foolproof and should not
be considered a substitute for screening out sequencing vector as
described above (III.4). If vector has been removed in that manner,
the "unremoved vector" detected here may simply be inaccurate vector
sequence, that did not match the correct sequence in the original
cross_match screen but does match other reads in which similar errors
occur. You may want to consider adding the (potentially erroneous)
sequence that is displayed in the phrap output to your vector file,
and redo the cross_match vector screen, to increase the likelihood
that you catch all of the vector. I would appreciate hearing of any
examples of sequence that is not vector being erroneously labelled as
such by phrap.

 (v) "Internal read matches", i.e. reads which have off-diagonal same
orientation matches to themselves (due e.g. to short tandem repeats).
This information is ignored at present, but ultimately will be used to
improve assembly of tandem repeat regions. Due to the use of
complexity-corrected Smith-Waterman scores some commonly occurring
short microsatellites may not be detected here.

Node-rejected pairs.

 (vi) Multi-segment reads, defined as reads whose confirmed parts
break into two or more pieces. These include chimeras and non-chimeric
"single links". They are omitted from the initial merging passes to
reduce the risk of false joins in the assembly, but are incorporated
in later merging passes; as a result, chimeric reads will generally be
assembled into a contig, but should be tagged as chimeric.

 (vii) Probable deletion reads, identified as reads which match some
other read but have a gap with respect to it of >10 bp (more
specifically, read 1 is determined to have a deletion with respect to
read 2 if there are two pairs of matching segments between the reads
such that the segments in read 1 are nearly adjacent (within 20 bases)
and the separation between the segments in read 2 is at least 10bp
larger than the separation in read 1), and for which there is no other
clone that shows the same deletion (the latter condition is needed to
rule out the possibility of repeated sequences for which some copies
have deletions). For each deletion clone and each such matching read,

the apparent size of the deletion, location of the deletion and (in
parentheses) name of the matching (undeleted) read and extent of the
segment that was deleted from in it are given.

 The probable deletions are not used in assembly and instead appear
as singleton contigs.

Revised quality (= phrap quality), and LLR score histograms, for two passes.

 (viii) Summary of "rejected" pairwise alignments; i.e. matches which
either prematurely terminate (do not extend as far as they should,
given the apparent sequence quality), or include mismatches between
high quality bases. In such cases the reads are probably from
different repeats, and so the alignments are not used in the assembly
(N.B. at present incompletely extended matches are considered during
the assembly, since a more sensitive criterion used there will reject
them if warranted).

 (ix) (N.B. This part of output needs revision). Summary of
information about accepted pairwise alignments, including no. of
confirmed reads (i.e. reads matching some other read), their average
lengths (total, confirmed, "strongly confirmed" (i.e. matching a
reverse sense read) and trimmed); a crude estimate of the clone size
(assuming all non-rejected matches are real -- if there are
near-perfect repeats, the size may be underestimated) and depth of
coverage; a histogram of depths (letting the depth of a read be the
maximum depth that occurs in it); a summary of the discrepancies
between matching reads (by strand sense, nucleotide and quality); and
a histogram of spacings between adjacent indel pairs. By sense of the
aligned pair (reads in same direction, reads in reverse directions).

Blocked reads
reads lacking a high-quality segment
Bypassed reads

 (x) Isolated singlets. These are reads having no non-vector match
(with score at least minscore) to any other read. Shown for each read
are its length, and the number of high-quality non-X bases. For most
reads, the latter number should be 0, indicating that the read is
either entirely vector (its high-quality part has been completely X'd
out) or is of very low quality; reads for which this value is positive
may be contaminants.

 (xi) Contigs (including "singleton contigs" consisting of a single
read -- these are cases in which the read did have a match with some
other read(s), but could not be consistently assembled with it). The
contigs are sorted by (increasing) number of reads, so that the
singleton contigs appear first. The following information appears for
each contig: the number of reads; the total length of the contig
sequence (not including pads); the length of the trimmed sequence
(i.e. after regions consisting entirely of lower case letters, N, and
X have been removed from either end of the contig); and a list of the
reads in the contig and information about their alignments. For each
read the following information is given: a 'C' if the read is in
reverse orientation; the starting and ending positions for the read

(i.e. its full length including vector and low-quality data, not just
the part that is alignable) with respect to the contig sequence;
the read name; the score of the alignment of the read against the
contig sequence; (in parentheses) the highest score of a match of the
read against some other read in a different contig or elsewhere in the
same contig (so reads for which this number is non-zero are those
which overlap a repeat, or an incorrectly or incompletely assembled
region); the per cent mismatch, insertion, and deletion rates for the
alignment of the read against the contig sequence; the number of bases
at the beginning of the read which were not included in the alignment;
(in parentheses) the number of bases at the beginning of the read
which did not align against any other read (i.e. were not confirmed);
and similarly for the bases at the end of the read. If the
unparenthesized number is substantially greater than the parenthesized
number that accompanies it, there could be a problem with the
alignment. Note however that different penalties are used for aligning
a read against another read as opposed to aligning it against the
contig sequence.

 Following the read list is information to be used in assessing the
quality of the assembly. This includes:

 A description of regions in the contig sequence whose quality has
been adjusted on the basis of alignments of reads to the contig (e.g.
regions that had double-stranded confirmation in the initial pairwise
comparison may not have when the contig is assembled, due to
resolution of repeats; and regions that were not confirmed in the
initial pairwise comparisons may be confirmed in the assembled contig,
due to the use of a lower gap penalty which gives more complete
alignments).

Histogram of the qualities of the contig bases; the extents of the
leading and trailing quality 0 regions of the contig (such regions are
likely to be highly inaccurate); and a list of the bases that have
quality < qual_show.

Slack and HQ Mismatch histograms (not yet documented here).

 A table showing "gaps" on each strand (i.e. regions for which there
is no aligned part of any read, so that additional data, or possibly
editing to permit alignment of existing data, is required); the
closest read that could potentially be extended or edited to cover the
gap; whether or not the inaccurate, unaligned part of that read
already covers the gap (in which case editing might be sufficient to
close it); and the length of an accurate extended read (from the same
start in the same clone) that would be required to cover the gap. The
table appears following the list of reads in the contig and their
positions. An example (from a contig in C05D11):

 Gap Size Closest read (Start) Covers Read length required
 now? to cover
Top strand:
 left - 244 244+
 1809 - 1880 72 x72c5.s1 (1382) No 499
 2967 - 2993 27 ae82b07.s1 (2562) Yes 432

 5392 - 5536 145 z17c5.s1 (4965) No 572
 6036 - 6320 285 z13f6.s1 (5537) No 784
 8137 - right 0+ z26c9.s1 (7667) No 469+

Bottom strand:
 left - 0 0+ z17b4.s1 (563) No 563+
 1138 - 1139 2 z14f3.s1 (1143) Yes 6
 6940 - 7230 291 z17c10.s1 (7666) No 727
 7717 - right 420+

 The gaps that say "left" or "right" are the ones at the left and
right ends of the contig (the gap size in this case is the part of the
existing contig sequence at that end that is not double stranded, with
the plus indicating that there is an additional gap to the left or the
right of the contig; these gaps are always designated not covered
("No")), and the relevant read in this case is the one that should be
extended to close gaps between contigs, while the other gaps are
internal gaps and the relevant reads are the ones required to get
double-stranding. Note one problem in this example: the bottom strand
gap of size 2 lies in the inaccurate 5' part of the z14f3.s1 read, so
that would probably not be an appropriate read to edit or get more
data from. Need appropriate cutoff values (i.e. size of 5' part of
read to ignore; this obviously depends on whether the 5' end has
already been trimmed prior to inputting it to phrap). Also, note that
since the full read lengths are used by phrap, the ends of the contigs
may include some very inaccurate sequence; so the size of the end gaps
(i.e. the total amount of inaccurate sequence there) could be larger
than indicated; this isn't particularly important though since in any
case one will always want to extend those reads to try to close the
gaps between contigs.

 Phrap uses a lower gap penalty (-2) in aligning reads to the contig
sequence (to allow more complete double-stranding than the -9 default
used for aligning reads to each other).

Gaps with "No" in the Covers? column will always require more data (an
extended read or walk step, depending on the required length). Those
with "Yes" may be coverable by editing of the appropriate read; but it
may be simpler to automatically get longer reads for them also,
particularly if the gap size is large, since substantial editing would
probably be required in that case to use the existing data. Walking
primers could be output directly from OSP analysis of the contig
sequence (high quality part, i.e. all upper case letters) in cases
where the gap looks too large to close with an extended read
(presumably "finish" already does this?)

Following the gap table, there is a table giving, for each quality
value, the total number of bases of that quality in the reads for the
contig; the number which are aligned (i.e. included in the SWAT
alignments of the reads against the contig); the cumulative no. of
aligned bases (for this and higher qualities); the number of bases not
included in the alignment (but potentially alignable -- i.e. not
lying before the beginning or after the end of the second sequence);
the number of discrepancies of each type (substitution, deletion,

insertion); the total # of discrepancies (for this quality level) and
their percentage (of the aligned bases of the given quality), and the
cumulative # of discrepancies and their percentage (of the cumulative
no. of aligned bases). The regions at the ends of the sequence that
consist entirely of quality 0 are reassigned quality values of -1,
since these usually correspond to the lowest quality data at the
extreme ends of reads. (Not done in the contig quality histogram.)

 An 'N' in either a read or the contig sequence is always counted as a
substitution error.

Depth 0 regions.

Following this there is more specific information about possible
problems with the assembly:

 Unaligned segments: parts of reads of length at least 10 that did not
align to the contig sequence (the part of the read having quality -1
is not considered).

 High quality discrepancies: sites in the contig sequence for
which at least one read with a quality at least qual_show disagrees
with the contig sequence. Most errors in the contig sequence will be
found either among these sites or in the regions where the contig
quality is < qual_show.

 Low quality suspects: sites in the contig sequence of quality <
qual_show (but greater than 0) for which there is a discrepant read of
equal or greater quality. Such sites are particularly error-prone.
The list gives the site position, base in the contig sequence and its
quality, and quality of the discrepant read.

[Formerly also printed out: for each of the two strands, the # of
reads on that strand having a substitution, insertion or deletion
(with respect to the contig sequence) at that position, and depth (#
of reads whose alignments extend across that position). The site
position is preceded by a '<' (resp. '=') if there is a read with a
discrepant higher (resp. equivalent) quality base at that position.]

 There then is given a list of the regions that are not covered by
"unique-reads" (i.e. reads with no non-rejected matches); and of
regions that match (as detected by one or more non-rejected pairwise
alignment between reads) other contigs or other regions in the same
contig. These are likely to be either true near-perfect repeats or
reflections of an error (of omission) in the assembly. To help
distinguish these possibilities, such regions are designated spanned
(if some read in the current contig extends all the way across it and
includes sequence to either side of it; a list of all such reads is
given) or "UNSPANNED" (if no such read exists). Misassembly errors of
commission generally arise from true near-perfect unspanned repeats,
and should result in an "UNSPANNED" flag for at least one of the two
matching regions. However not all of them do -- while the fact that
repeats exist should generally be detected by phrap, the full extent
of the repeat may in some cases not be detected, and the apparent
repeat may be "spanned" even though the full (true) repeat is not.

Moreover in some cases of misassembly only one of the matching contig
regions may be flagged as unspanned. Misassembly errors of omission
should always result in "UNSPANNED" matching regions at the end of one
or both contigs.

 Regions of a non-singleton contig matching an anomalous (chimeric or
deleted) read are indicated only in the output for the singleton contig
that contains the anomalous read.

 (xii) Following the contig information, there is a summary of the
forward/reverse read consistency checks. For each pair of reads with
the same clone name are given the contig no. and orientation within the
contig (0 = top strand, 1 = bottom strand) for each read; an "L" (for
"link") if the reads occur in different contigs; a '*' if there is an
inconsistency (e.g. forward and reverse reads which are not pointing
towards each other, or two forward reads which are not on the same
strand); distance between read starts for forward/reverse pairs
(should correspond to clone insert size, and be positive); and
distance between starts for forward/forward or reverse/reverse pairs.

N.B. IN ALL PLACES WHERE A POSITION IS GIVEN, THE POSITION IS WITH
RESPECT TO THE UNPADDED SEQUENCE, NOT THE PADDED SEQUENCE.

VII. CROSS_MATCH OUTPUT

 In addition to the standard output, the files produced include the
standard error and .log files (as for phrap); and the .screen file
(produced when the option -screen is used).

Standard output

 The standard output lists matches between any sequence in the first
input file (the "query" sequences) and a sequence in the second (or
later) input file (the "subject" sequences); or, if a single input
file is provided, the matches between any two sequences in this file.
The matches that are reported are controlled by the command line
options -minscore, -masklevel, and -minmargin, as well as by the options that
control scoring of the alignments and the band search (see section IV
above). The reported matches are ordered by query, and for each query
by the position of the start of the alignment within the query.

 For each reported match, an initial output line gives summary
information:

 Example:

440 2.38 1.39 0.79 hh44a1.s1 33 536 (0) C 00311 (3084) 8277
7771 *

Interpretation:
 440 = smith-waterman score of the match (complexity-adjusted, by default).

 2.38 = %substitutions in matching region
 1.39 = %deletions (in 1st seq rel to 2d) in matching region
 0.79 = %insertions (in 1st seq rel to 2d) in matching region
 hh44a1.s1 = id of 1st sequence
 33 = starting position of match in 1st sequence
 536 = ending position of match in 1st sequence
 (0) = no. of bases in 1st sequence past the ending position of match
 (so 0 means that the match extended all the way to the end of
 the 1st sequence)
 C 00311 : match is with the Complement of sequence 00311
 (3084) : there are 3084 bases in (complement of) 2d sequence prior to
 beginning of the match
 8277 = starting position of match in 2d sequence (using top-strand
 numbering)
 7771 = ending position of match in 2d sequence
 * indicates that there is a higher-scoring match whose domain partly
includes the domain of this match.

Following this line there appears (if the flag -discrep_lists is
specified) a listing of the discrepancies between the aligned regions
of the two sequences, giving for each discrepancy its type (S =
substitution, I = insertion, D = deletion, E = end base (mismatching
base immediately adjacent to aligned region -- these are printed only
if the -output_bcdsites option is specified)), position, nucleotide,
and quality (in the query sequence), and its position in second
sequence. This list is followed (if -discrep_tables is specified) a
table giving, for each quality value, the total number of bases of
that quality in the first sequence; the number which are included in
the SWAT alignment; the cumulative no. of aligned bases (for this and
higher qualities); the number of bases not included in the alignment
(but potentially alignable -- i.e. not lying before the beginning or
after the end of the second sequence); the number of discrepancies of
each type (substitution, deletion, insertion); the total # of
discrepancies (for this quality level) and their percentage (of the
aligned bases of the given quality), and the cumulative # of
discrepancies and their percentage (of the cumulative no. of aligned
bases). This information is useful for computing accuracy as a
function of quality, for automatically generated contig sequences.
 In the discrepancy listing and table, the regions at the ends of the
sequence that consist entirely of quality 0 are reassigned quality
values of -1, since these usually correspond to the lowest quality
data at the extreme ends of reads. (Not done in the phrap output...)
 An 'N' in either sequence is always counted as a substitution error.
 If the flag -alignments is specified, a complete alignment for each
reported match is displayed.
 If the flag -score_hist is specified, a list of the scores of all
matches involving the query is given, along with the number of times
each score occurred.

VIII. SPECIAL CONSIDERATIONS/PARAMETER MODIFICATIONS FOR PARTICULAR DATA TYPES

For all: tag repeats (to reduce incidence of false joins). But don't
need to use most sensitive detection -- only evolutionarily recent

repeats (nearly identical in sequence) tend to cause problems. Repeatmasking.
Need script to process cross_match output, insert matches into fasta file as
tags (or phd files?)

Also use quality values if possible.

1. (TO BE ADDED) Shotgun assemblies
 Main problem: wide variation in data quality between sequencing labs.
 Different depth of coverage.
 Increase -forcelevel if contigs not going together.
 Reads unaligned to final sequence.
 Increase minmatch, decrease maxgap to break bad joins.

2. (TO BE ADDED) Whole genome assemblies
 Can't predict memory needed. Repeat characteristics play crucial role.
 Increase minmatch.
 If contigs large (=> depth of coverage high), increase -node_seg and -
node_space

3. (TO BE ADDED) Assemblies of polymorphic reads from a single locus
 Increase minmatch, set maxmatch = minmatch.

4. (TO BE ADDED) EST assemblies
 Issues: polymorphisms, paralogous genes, alternatively spliced forms,
 uneven assembly depth, directional bias, large dataset size,
 artifactual clones, data from several sources with & without quality vals.
 Identify highly expressed genes, remove reads from assembly. Compare reads
 to contig sequences.
 depth of coverage high => increase -node_seg and -node_space
 Parameters: increase minmatch and set maxmatch = minmatch.

 Deep assemblies (3 and 4): node_seg etc.

5. Comparisons of ESTs/cDNAs to genome.

 With long reads, use -near_minscore to increase sensitivity to
detect short exonic matches. In this case, each match is reported
separately, and alignments are (currently) not adjusted to reflect
likely splice junctions.

 With long or short reads, use -spliced_word_gapsize and
-spliced_word_gapsize2 to directly detect likely introns (in the case
of long reads, -fuse_gap1 should also be set so that reported
alignments can include more than one intron). Reported alignments and
discrepancy lists (using -alignments and -discrep_lists) will then
indicate precise location & size of the putative intron, and
alignments report the bases at each end of the intron. Note that
there can be a substantial speed penalty for detecting modest size
introns using -spliced_word_gapsize, e.g. -spliced_word_gapsize 300
(to detect introns of size <= 300) may approximately double running
times. There is also an increased risk of 'noise' alignments due to
the greater total number of potential alignments that are
considered. In contrast, there is relatively little speed penalty with
-spliced_word_gapsize2 because far fewer candidate splices are
considered.

 When using -spliced_word_gapsize2 with short reads you may want to
set -minscore fairly low, and/or spliced_match_left and
spliced_match_right higher than the defaults, to increase the
probability that a match is found in the vicinity of the true splice
site.

See next section for other parameter settings useful with short reads.

6. Short read analyses (e.g. Solexa/Illumina data).

 Recommended parameter changes include:

 Smaller -minscore (e.g. 20 or 25, if the default score
matrix/penalty values are being used). The default minscore value of
30 requires at least 30 matching bases, which may be too high to
reliably detect matches involving reads only slightly longer than 30
bases (on the other hand, you should expect some false positive matches at
the lower settings)
 -vector_bound 0 (for phrap; 0 is already the default for cross_match)
 -gap1_only or -bandwidth 2. Note that large indels in short reads
cannot be detected anyway, at least with the default gap penalties;
using a larger bandwidth value with -gap_ext 0 may provide some
ability to detect larger indels (at the expense of additional 'noise'
alignments). -gap1_only is in general significantly faster than
-bandwidth 2, and is recommended with short reads. However it cannot
detect indels of size larger than 1.
 -max_group_size 0 (for phrap assemblies where coverage depth is
very uneven, e.g. ESTs)
 -globality 1 (for cross_match; requires that -gap1_only,
-spliced_word_gapsize2 and/or -spliced_word_gapsize is also set).

 Note that with cross_match, using -masklevel 101 to report all
matches can dramatically increase running times and memory
requirements in cases where some queries match high-copy number
repeats; it is generally preferable to use lower values (e.g. the
default, or -masklevel 0), together with an appropriate value of
-minmargin to control the score range of reported matches. Using
-minmargin 1 or higher reduces the number of stored alignments, which
can reduce running time and memory requirements. Note also that a
histogram for each query, indicating all match scores meeting the
-minscore threshold, can be obtained by setting -score_hist.

 Limiting reported alignments to those with high-confidence placements
can be achieved by using -minmargin with positive values.

 If it is important to detect regions of highly biassed composition
you may want to turn off complexity-adjustment of scores by setting
the command line parameters -raw and/or -word_raw. In general I do
not recommend using -raw, since it tends to greatly reduce specificity
(increase the number of false positive matches) at a given score
level; one can usually do a better job of increasing sensitivity to
detect biassed composition regions while maintaining reasonable
specificity simply by lowering -minscore and setting -word_raw. Note
however that using -word_raw can incur a significant speed penalty.

(Reducing -maxmatch, without setting -word_raw, has the effect of
'partially' removing word complexity adjustment, which can provide a
useful compromise for the speed/sensitivity tradeoff in some
cases). Since exons are generally less likely to have highly biassed
composition regions, it is usually preferable not to use -raw or
-word_raw in RNASeq (cDNA or EST) searches.

 Reducing the value of -minmatch will also also increase sensitivity,
as will reducing -gap1_minscore (when gap1_only is not already set).
Note that this may substantially increase running time.

In general, appropriate parameter settings for your analyses will
depend on the characteristics of your data (e.g. genome complexity,
read error rates) as well as your computer resources. I recommend
experimenting on a subset of your data before committing to very long
runs. For resequencing applications, a useful parameter for this
purpose is -output_nonmatching_queries. For example, you can start by
using the default parameter setting for -minmatch (but using
adjustments for the other parameters as indicated above), and then try
turning up the sensitivity using the nonmatching queries to see
whether this recovers substantially more matches.

7. "Resequencing" applications.

 A useful analysis mode is to run cross_match comparing a large set of
reads (e.g. 2 million or so Solexa reads) in a single query file to a
genomic sequence comprising the subject file(s), setting the
parameters -discrep_lists and -output_nonmatching_queries along with
any others that may be appropriate (e.g. those for short reads above).
High quality discrepancies in the discrepancy lists will include
substitution and small indel differences between the resequenced &
original genomes. Larger scale differences, and contaminants, can
often be identified by performing a phrap assembly of the nonmatching
query reads, and comparing the contig sequences back to the original
genome (using more sensitive parameter settings if desired) and/or to
the nucleotide databases using the NCBI Blast server. The bcdsites
parameters can be used to produce an output file indicating positions
in the reference genome that are either confirmed by or have
high-quality discrepancies with the input reads.

 When the option -alignments is used to display the aligned sequences,
there is currently a speed advantage to having the subject
(genomic) sequences split among multiple subject files (e.g. one file
per chromosome) rather than all included in a single file.

8. (TO BE ADDED) Merged base reads

IX. PROBLEMS

1. Insufficient memory.

 If the run stops prematurely, displaying the message

 FATAL ERROR: REQUESTED MEMORY UNAVAILABLE

then you need to increase the amount of memory alloted to you by the
operating system. This can usually be done without obtaining
additional physical RAM for your computer -- it is usually enough just
to have the operating system allocate additional virtual memory to
your process. (However if you are substantially exceeding physical RAM
the run may take an exceptionally long time to complete). On Unix
systems you can often get access to additional memory using the
"limit" command, as follows:

i. Run "limit" with no arguments to list the system resources currently
available to you. For example (this output is for a DEC alpha
computer -- the output on other computers may look somewhat
different):

> limit
cputime unlimited
filesize unlimited
datasize 131072 kbytes
stacksize 2048 kbytes
coredumpsize unlimited
memoryuse 699392 kbytes
descriptors 4096 files
addressspace 1048576 kbytes

The relevant parameter here is datasize, currently set to
about 131 megabytes.

ii. Now run limit with the option -h to see what the maximum possible
values for these parameters are:

> limit -h
cputime unlimited
filesize unlimited
datasize 1048576 kbytes
stacksize 32768 kbytes
coredumpsize unlimited
memoryuse 699392 kbytes
descriptors 4096 files
addressspace 1048576 kbytes

This shows that datasize can be increased to 1048576 kbytes, or about
1 Gb. It may be possible to increase this even further by altering
the operating system configuration (this may require rebuilding the
kernel and is best left to an expert).

iii. Run limit once again, providing the desired value for datasize, e.g.:

> limit datasize 500000

which increases datasize to 500 megabytes. Any value smaller than the
value returned in step ii can be used.

iv. Now try your phrap (or cross_match) run again. Note that the new

datasize value will only apply to the particular shell (window) in
which you execute the limit command, so you may need to repeat step
iii next time you log in or if you switch to a different window.

If you still get a FATAL ERROR: REQUESTED MEMORY UNAVAILABLE message
after doing the above, then the operating system (not phrap!) is still
limiting your access to virtual memory. You will need to consult with
a local system administrator in this case.

2. Other phrap- or cross_match-generated error messages
 (TO BE ADDED)

3. Phrap- or cross_match-generated warning messages

 These can generally be ignored, unless there is something obviously
wrong or incomplete about the assembly
 (TO BE ADDED)

4. "Crashes" reported by operating system

 True "crashes" (e.g. segmentation fault, floating point exception)
generally indicate a bug in the program. I would greatly appreciate
having any such problem reported to me, as described below.

5. Long running time.

 If the run appears to be "stuck" or takes an exceptionally long time
to complete, try using a larger value for the parameter -minmatch
(above, section IV.2)

6. Misassemblies, incomplete assemblies, incorrect selection of read for
consensus sequence.
 Marked discrepancy not split ...
 (TO BE ADDED)

7. How to report problems

 If you have a problem that is not addressed by any of the above,
first be sure you have read sections I-IV of the documentation and
that you are using a current version of the programs. Then repeat the
run in which the problem occurred, capturing the standard error to a
file. For example, the following command, run on a Unix computer in a
C shell, captures the standard output to a file phrap.out and the
standard error to a file stderr.file:

 (phrap reads.screen > phrap.out) >& stderr.file

Then send a copy of the standard error (only! -- not the standard
output), i.e. the file stderr.file in the above example, to me at the

following email address:

 phg@u.washington.edu

(If the standard error is more than 1 or 2 pages you have probably
inadvertently captured the standard output.) Please do NOT send the
standard output, datasets, or any other large file without making
prior arrangements to do so with me! Large files cannot be sent to the
above address, which has a limited disk quota on a Univ. of Washington
computer.

APPENDIX: ALGORITHMS

[N.B. MUCH OF THE FOLLOWING DESCRIPTION IS SOMEWHAT OUT-OF-DATE].

Outline of phrap assembly:

0) Read in sequence & quality data, trim off any near-homopolymer runs
at ends of reads, construct read complements.

1) Find pairs of reads with matching words. Eliminate exact duplicate
reads. Do swat comparisons of pairs of reads which have matching
words, compute (complexity-adjusted) swat score.

2) Find probable vector matches and mark so they aren't used in assembly.

3) Find near duplicate reads.

4) Find reads with self-matches.

5) Find matching read pairs that are "node-rejected" i.e. do not have
"solid" matching segments.

6) Use pairwise matches to identify confirmed parts of reads; use these to
compute revised quality values.

7) Compute LLR scores for each match (based on qualities of discrepant and
matching bases).

(Iterate above two steps).

8) Find best alignment for each matching pair of reads that have more
than one significant alignment in a given region (highest LLR-scores
among several overlapping).

9) Identify probable chimeric and deletion reads (the latter are
withheld from assembly).

10) Construct contig layouts, using consistent pairwise matches in
decreasing score order (greedy algorithm). Consistency of layout is

checked at pairwise comparison level.

11) Construct contig sequence as a mosaic of the highest quality parts
of the reads.

12) Align reads to contig; tabulate inconsistencies (read / contig
discrepancies) & possible sites of misassembly. Adjust LLR-scores of
contig sequence.

 Phrap adjusted quality values/error probabilities: Phrap computes
adjusted quality values for each read on the basis of read-read
confirmation information, as follows. If a read is confirmed by an
opposite-strand or different-chemistry (dye terminator vs. dye primer)
read at a given position, that position is given a quality which is
the sum of the two input read qualities; when more than one
opposite-strand read confirms a given position, only the single
highest quality from all opposite-strand matching reads is used. If
qualities are related to error probabilities as described above, this
procedure can be interpreted as computing an error probability for
each base which is the product of the error probabilities for the two
reads; since error profiles for opposite-strand or different chemistry
reads are essentially independent, this is reasonable, although it is
somewhat conservative in that it does not take into account
same-strand matches (which clearly should count for something,
although they certainly are not independent).

 Contig positions are assigned quality values equal to the highest
adjusted quality of any read at that position, and then adjusted
downward to take into account any discrepancies with other reads. As a
result, when phred input qualities are used, the output phrap
qualities associated to each contig position have a natural
interpretation as (conservative) error probabilities. Such error
probabilities provide an extremely useful guide to where editing or
additional data collection is needed.

 The phrap adjusted qualities are used in computing "LLR scores" for
each pairwise match between two reads. These scores take into account
the qualities of the base calls in the reads, and are (approximate)
log-likelihood ratios for comparing the hypothesis that the reads
truly overlap to the hypothesis that they are from 95% similar
repeats. The point is that discrepancies between overlapping reads are
due to base-calling errors and thus tend to occur in low-quality
bases, whereas reads from different repeats can have high-quality
discrepancies that are due to sequence differences between the
repeats; and the probability of the observed data under each
hypothesis can be quantified using the interpretation of the phrap
qualities in terms of error probabilities. A pairwise match tends to
have a positive LLR score if the two reads overlap, whereas it tends
to have a negative LLR score if the two reads are from different
repeats (unless the repeats are nearly identical).

 Description of algorithms:

 0) The procedure used in both phrap and cross_match to find
sequence matches is the following. First, (in phrap only) any region

at the beginning or end of a read that consists almost entirely of a
single letter is converted to 'N's; such regions are highly likely to
be of poor data quality which if not masked can lead to spurious
matches. Reads are then converted to uppercase (in order to allow
case-insensitive nucleating perfect matches). All matching words of length at
least
minmatch between any pair of sequences are then found, by (i)
constructing a list of pointers to each position (in each sequence)
that begins a word of at least minmatch letters not containing 'N' or
'X'; (ii) sorting the list (using a modified version of quicksort,
with string comparison as the comparison function + a few tricks to
improve speed by keeping track of the parts of the words that are
known already to match); (iii) scanning the sorted list to find pairs
of matching words. For each such pair, a band of a specified width
(in the imaginary dot matrix for the two sequences), centered on the
diagonal defined by the matching words, is defined. Overlapping bands
(for the same pair of sequences) are merged. Following construction
and merging of bands, a "recursive" SWAT search of each band is used
to find matching segments with score greater than or equal to
minscore: "recursive" here means that if such a match is found, the
corresponding aligned segments in each sequence are (conceptually) X'd
out and the process repeated on the remaining portions (if any) of
each sequence. This procedure allows (at the cost of some redundant
calculation) detection of multiple matching pieces in different
locations, and will usually find most copies of repeats (since they
generally occur in separate bands).

 By default, SWAT scores are complexity-adjusted (so that matches for
which the collection of matching nucleotides has biassed composition
have their scores significantly penalized.)

 1) In phrap, sequence pairs with score >= minscore are considered for
possible merging. A critical issue here is the appropriate score
matrix for SWAT. [Given the generally high accuracy of reads and the
desirability of minimizing false matches due to imperfect repeats, a
relatively high penalty seems desirable. Currently I use +1 for a
match, -9 for a mismatch involving A,C,G, or T, 0 for a match or
mismatch involving N, -1 for a match or mismatch involving X, -11 for
the gap initiating penalty (the first residue in a gap), and -10 for
the gap extension penalty (each subsequent residue).] Setting the
indel penalties slightly higher than the mismatch penalties gives
better alignments by favoring mismatches in compression regions. Since
SWAT uses profiles, one has the option of distinguishing different
quality levels by use of different symbols (e.g. upper case for more
accurate calls, lower case for less accurate calls) and setting the
penalties appropriately; this would involve using the quality levels
to adjust the symbols used in the reads, which should be done AFTER
the nucleating perfect matching routine. (At present it does not seem
particularly
useful to use differing positive scores for different nucleotides to
reflect their different frequencies).

 1a) Determine "confirmed" part of each read (i.e. the part which
appears in a SWAT alignment against some other read; a read with the
same name -- up to an internal '.' if any -- is not considered

confirming). Probable chimeras are detected as reads for which the
confirmed part can be separated into two non-overlapping pieces,
separated by at most MAX_CHIMERA_GAP bp (currently 30) such that the
part confirmed by a given read lies in one or the other piece but not
both; AND such that each piece has a prematurely terminating alignment
with some other read. Chimeric reads may arise from i) chimeric
clones; ii) gel mistracking across lanes; iii) unremoved sequencing
vector; (iv) deletion clones. Reads having two non-overlapping
confirmed pieces (but failing the "premature termination" condition)
are often non-chimeras that are the only link between two
non-overlapping contigs, and thus should be permitted in the assembly.
 Identify "strongly confirmed" regions in each read: having matches
to a reverse sense read.
 Identify deletions.
 Identify "rejected" alignments -- those which don't extend as far as
they should, or that have mismatches involving high quality bases.

 2) Sort all matching pairs by decreasing LLR score, and assemble
layout by progressively merging pairs with high score. Consistency of
merge is required: the SWAT alignment implies relative offset of one
contig with respect to another, and hence a potential implied overlap.
The SWAT alignment(s) should extend over essentially the entire region
of implied overlap, apart from an allowable gap (necessary to allow
for the fact that the ends of the alignments are somewhat uncertain).
Probable deletion clones (identified as reads which have two adjacent
pieces matching two separated pieces of another read, and having no
confirming read across the breakpoint), and chimeras are not used in
any merges. [N.B. Following is obsolete: Potential chimeras are
deferred to a second pass (as well as being flagged in output), so
that true reads will assemble first.]

 3) Construct contig "consensus" as a mosaic of individual reads.
Strategy: ends of alignments, and midpoints of perfectly matching
segments of sufficient length, define crosslinks - pursue crosslinks
which increase accuracy and extend read. Formally this is done by
constructing a weighted directed graph whose nodes consist of
(selected) positions in reads; there are bidirectional edges with
weight 0 between aligned bases in overlapping reads, and
unidirectional edges from 5' to 3' positions within a single read,
with weight equal to the total quality of the sequence between the two
nodes. Standard C.S. algorithms (dating back to Tarjan) permit
identification of a path with maximal weight, in time linear w.r.t.
number of nodes.
 The quality values for the resulting sequence are inherited from the
read segments of which it is composed.

